

Johnny Morrison-Howe UP926743

2

PodcastScrobbler
The development of a mobile
application for tracking songs in a
podcast

By Johnny Morrison-Howe

Project Unit: PJE30

Supervisor: Dr Dalin Zhou

May 2023

Johnny Morrison-Howe UP926743

3

Acknowledgements
I would like to thank my supervisor, Dalin Zhou, for his help and support throughout this
project. I’d also like to thank my friends, namely Amber Turner-Brightman for their
guidance in writing the report, and Emily Hudson for her invaluable advice and
camaraderie in software development.

Johnny Morrison-Howe UP926743

4

Abstract
When listening to music podcasts, it is not possible to upload metadata for tracks within
to music tracking and discovery services like Last.fm - rather only metadata for the
podcast itself. In this project I designed, implemented, and tested an Android application
to perform this task.

I used Kotlin to build an audio playing service, with Jetpack Compose on top of that for
the User Interface, where I also adhered to Google Material Design guidelines. The
application has capabilities for obtaining, parsing, and storing podcasts, as well as
playing episodes and showing the current track to the user via a persistent notification.
I found that the application parses and manages all podcast feeds tested, with tracklists
retrieved from descriptions for 5 out of the 6 podcasts tested.

It was planned to include Last.fm integration so that track metadata could be uploaded
to the website, however this was not completed in time. Future work would involve
adding this functionality and other features like favouriting and sorting of podcasts to
bring it in line with other standard podcast applications.

Johnny Morrison-Howe UP926743

5

Table of Contents
Acknowledgements .. 3

Abstract .. 4

Table of Contents .. 5

Table of Figures ...8

Legal, Ethical & Social Issues ..8

Introduction... 10

Literature Review ... 11

Popularity of Music Tracking... 11

Music Podcasts... 11

Podcast players .. 12

Spotify .. 12

Google Podcasts ... 12

Apple Podcasts ... 12

Identifying a gap ... 13

Solutions that get close to bridging the gap ... 13

Conclusion ... 14

Requirements .. 15

Project brief ... 15

Requirements table .. 15

User Interface Design .. 17

Browsing all podcasts (main screen) ... 17

Player ... 17

Adding a podcast ... 18

Browsing episodes ... 18

Episode Details & Tracklist .. 19

User Flow .. 19

Adding a podcast .. 20

Playing an episode .. 20

Components ... 21

Overview.. 21

Activity ... 21

PodcastScrobbler Composable .. 21

Service .. 22

Data Classes .. 22

Johnny Morrison-Howe UP926743

6

Podcast ... 22

Episode ... 22

Track ... 22

Utilities .. 23

Podcast Manager ... 23

RSS To Class .. 23

Description to Tracks .. 23

Component Diagram ... 24

Implementation .. 25

Tooling .. 25

Kotlin ... 25

Android Studio ... 25

Target Device ... 25

Repository ... 25

Data Classes .. 25

Parsing an RSS Feed ... 26

Issues with XML ... 26

Iteration station .. 26

Parsing the description ... 26

Regular expressions .. 27

Persistent storage ... 28

Persistence is key .. 29

MainActivity and PodcastScrobbler .. 29

Remember .. 30

Scaffold ... 30

Navigation ... 30

Browsing podcasts ... 31

Adding a podcast ... 31

Browsing Episodes ... 31

Episode Details .. 32

Playing Media ... 34

Media3 .. 34

Creating a service .. 34

Serialization struggles ... 34

Posting a notification and starting playback .. 34

Keeping track of the current track ... 35

Johnny Morrison-Howe UP926743

7

Playback Controls ... 37

Binding the service .. 37

Controls Composable .. 37

Utilising Material Design ... 38

Colour Schemes ... 38

Dynamic Colour .. 38

Implementation conclusion .. 38

Development experience .. 38

Effort Distribution... 39

Testing.. 40

RSS Feed Parsing .. 40

Podcast storage ... 41

Parsing descriptions ... 41

Playing audio .. 42

Uploading metadata .. 43

Against requirements .. 44

Project Management... 46

Methodology .. 46

Risks .. 47

Evaluating Project Management .. 47

Conclusion ... 48

Summary... 48

Future Work.. 48

Last.fm integration ... 48

Parsing tracklists with times ... 48

Enhanced playback controls .. 49

Lower priority requirements ... 49

References ... 50

Johnny Morrison-Howe UP926743

8

Table of Figures
Figure 1 .. 11

Figure 2 ... 12

Figure 3 ... 12

Figure 4 ... 12

Figure 5 ... 13

Figure 6 ... 17

Figure 7.. 18

Figure 8 ... 18

Figure 9 ... 19

Figure 10 ... 20

Figure 11 ... 20

Figure 12 .. 21

Figure 13 ... 22

Figure 14... 24

Figure 15 ... 26

Figure 16 ... 26

Figure 17 ... 27

Figure 18 ... 28

Figure 19 ... 29

Figure 21 ... 30

Figure 20 .. 30

Figure 22 ... 31

Figure 23 .. 32

Figure 24 .. 32

Figure 25 .. 33

Figure 26 .. 35

Figure 27 .. 36

Figure 28 .. 37

Figure 29 .. 37

Figure 30 .. 37

Figure 31 ... 38

Figure 32 .. 40

Figure 33 .. 42

Figure 34 .. 42

Figure 35 .. 42

Figure 36 .. 46

Figure 37 .. 49

Legal, Ethical & Social Issues
Although I don’t believe there are any professional or social issues, I will need to take
security into account. Recording song metadata using Last.fm’s API requires an account,
therefore I will need to store the username and a private key for accessing the API. I
plan only to store this information on the device however, so I would not need to deal
with any data protection laws. Any end user other than myself would have a separate

file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162046
file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162047
file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162048
file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162049
file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162050
file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162051
file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162053
file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162057
file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162059
file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162066
file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162076
file:///C:/Users/Johnny/Documents/Uni%20Stuff/Third%20Year%20Project/Final%20Year%20Project%20-%20UP926743.docx%23_Toc135162077

Johnny Morrison-Howe UP926743

9

agreement with Last.fm for their own account on creation and when logging in, however
I do not plan to conduct user research for this project.

Johnny Morrison-Howe UP926743

10

Introduction
For as long as I can remember, one of my favourite genres of music has been
progressive house and dance. Tracks in this genre are all a similar length, pacing and
speed, therefore they go great mixed together. One of the most accessible forms of this
short of going to a nightclub is the podcast, typically hosted by an artist or label
promoting tracks; this of course means there’s a tracklist in case you like one, but how
do you know which one you’re listening to right now? Counting up the list, copying the
track name and artist, and pasting it into a streaming service to see if it’s the right one
often takes a few tries, but what if it were as easy as glancing at the playback
notification?

Extrapolating on this idea, what if you could see a history of tracks you’ve listened to
this way, alongside recommendations for other related tracks, shared with your friends?

Although the latter proposition is taken care of using music tracking and discovery
services like Last.fm, there is currently no solution to the first problem, one that I’ve had
ever since I started listening to progressive house sets in the form of podcasts. To solve
both issues, I would need to create an application that:

• Manages podcasts like any other podcast application, i.e. processing a podcast
feed and allowing the user to browse their podcasts

• Plays podcasts, continuing to play in the background after the application is
closed

• Interprets a podcast episode’s description and shows the user the currently
playing track

• Uploads metadata for the currently playing track to Last.fm

Implementing a system that performs these tasks would make it far more convenient
for people in my situation to track what they’re listening to, and could also both help
bring those who listen to progressive house into the world of podcasts, and those who
listen to podcasts into the world of automatic music tracking and discovery. The solution
would both play podcasts and “scrobble” them(explained in the next section), so I have
named the project PodcastScrobbler.

Johnny Morrison-Howe UP926743

11

Literature Review
Popularity of music tracking
An application like Podcast Scrobbler may be useful, as there is clear demand shown
for tracking habits in other areas. Spotify’s Wrapped is often the first such application
that comes to one’s mind – when released initially, “the internet descended into a frenzy
of users screenshotting and sharing their streaming statistics all over social media”
(Adenuga, 2022, p. 3). There is an older, format-agnostic service however, which uses
a technique called Scrobbling. Coined by Audioscrobbler (BBC News, 2003), Scrobbling
is the act of automatically tracking music played on a system and storing it (Antonelli,
2023).

Last.fm is a service created almost
alongside Audioscrobbler, for the
purpose of using this data to make
recommendations of new music to
users and make the data sharable in the
form of profiles. Error! Reference
source not found. shows a screenshot
of Last.fm, displaying my three most
recently played tracks. Although less so
now, it proved to be a popular service,
having in 2006 won Best Community
Music Site at the BT Digital Music
Awards (TechRadar, 2006). Last.fm has received a rejuvenation recently, with a
Netherlands-based developer building a Discord bot for Last.fm with over 400,000
registered users (Krastrenakes, 2022). It is worth noting that alternatives to Last.fm
exist which use the same scrobbling software, like Libre.fm.

Music podcasts
A podcast is an episodic series of audio files, spanning topics from news to fictional
drama to music. The format as it is today was standardised in 2000, by attaching audio
files to RSS feeds (Louis, 2000). The term podcast was defined in 2004 by Ben
Hammersley, relating to the iPod device they were associated with (Hammersley, 2004).

Podcasting has been increasingly popular since its inception; Whereas in 2005 the term
podcast returned “over 61 million hits” on Google (Berry, 2006, p. 144), the term now
returns over 5 billion. There are over 2 million podcasts on Apple Podcasts as of 2023
(Lewis, 2023).

A particular genre of podcast is the music podcast, involving music being played,
occasionally with commentary, like a radio show. Tracks are often mixed by the host in
the form of a DJ Set – for example, the Mind Over Matter Podcast by Embliss (Brandwijk,
2022).

Figure 1

Johnny Morrison-Howe UP926743

12

Podcast players
The most common applications for listening to podcasts in the US are Spotify, Apply
Podcasts and Google Podcasts (Götting, 2022). All have the ability to subscribe to a
podcast feed, browse podcasts and episodes, display information like date released
and a description, and play episodes.

Spotify
Spotify’s user interface for the library is uncluttered and gets
straight to the point1, with a list of podcasts(Figure 2), and a
list of episodes for each item on the list. Menu entries display
saved as well as new episodes, and there is a persistent bar at
the bottom of the screen for playback controls.

Google Podcasts
Google Podcasts takes a similar
approach, however the initial Library
screen contains a list of menus –
Subscriptions, Queue, Downloads
and History, rather than showing
these within the list of podcasts. The
subscriptions screen (Figure 3) uses
a grid rather than a list, increasing the
prominence of cover art and

displaying more entries per screen,
at the cost of information like the

latest episode date or the publisher.
It also has a bottom bar displaying
the current podcast.

Being an official offering from the
creator of Android, it complies with
its design framework, Material
Design. My current wallpaper has an overall pink tone, and as
a result Google Podcasts adopts a pink colour scheme.

Apple Podcasts
Apple Podcasts displays both a list of different menus as well
as a grid of the most recently updated episodes in the same
screen(Figure 4). The cover art is larger than that of Google
Podcasts and shows the type of podcast underneath the title.
Like the two above applications, a persistent bottom bar is
shown for playback.

1 The home page is a more contested topic (Madaan, 2023), (Perry, 2023), but this does not
cater to podcasts alone and so is less in the scope of this project.

Figure 2

Figure 3

Figure 4

Johnny Morrison-Howe UP926743

13

Identifying a gap
Music podcasts can be scrobbled, however only by title of the podcast – not the tracks
within. For users who repeat-listen to podcasts for the tracks within, listening data is
effectively lost or mis-represented. However, tracks are often listed in the description
i.e. in the case of Mind Over Matter.

Solutions that get close to bridging the gap
On many music services, it is possible to play a ‘radio’ of sorts, where tracks are played
algorithmically based on a track, artist, or genre (Kostek, 2018). It is possible to scrobble
these using standard scrobbling applications, and the individual tracks’ metadata can
be gathered and either shared or used for recommendations. As tracks are only
scrobbled when played at least halfway (Last.fm, n.d.), played tracks in a ‘radio’ are only
scrobbled if the user likes them enough to keep listening rather than skip them.

In 2018, the BBC announced that their
BBC iPlayer Radio service would be
discontinued in favour of BBC Sounds
(Taylor-Watt, 2018). When radio
programmes with music are played, the
media API with the respective platform
is provided with the current track, as
opposed to the name of the radio show.
This effectively provides a scrobbling
service reading the media API with the
current track.

Figure 5 shows this in action – BBC
Sounds is posting a media notification
to Android, and Scroball (a separate
scrobbling application (Peter Josling,
2020)), is reading the Title and Artist of
the current track. Although this is a
solution to the problem, it only works
with radio shows from the BBC, rather
than all podcasts.

When researching user interfaces for podcast applications, I noticed that all music
podcasts on Spotify I searched for were presented as artists and albums(from Spotify
as a music service), rather than podcasts and episodes. Proton Radio and other labels
have introduced an alternative way of publishing DJ sets through music streaming
services (Wohlstadter, 2023). A DJ set is sliced into individual tracks which are played
with gapless playback. As the tracks are labelled individually, they appear as the
standalone track to a scrobbling application. Although the method works, only DJ sets
by artists significant enough to be signed to a label can be published this way. This has
the advantage for the DJ and artists whose tracks feature in a podcast, as they earn
revenue as if a track had been played whereas they would not have done through a
standard podcast.

Figure 5

Johnny Morrison-Howe UP926743

14

Conclusion
After reading related articles, it is clear there is a gap in the field for a service that can
scrobble tracks from podcasts, especially those that haven’t been presented in a format
that makes this already possible (i.e. extensive back catalogues). I have yet to find
literature showing demand for this exact application (minus a lone Reddit comment
(c210344, 2016)), however building such an application may induce demand for it as
the currently less-related groups of those either listening to podcasts or using music
tracking and discovery services could certainly be brought together by the application
I propose.

Johnny Morrison-Howe UP926743

15

Requirements
Project brief
To fill the gap in products, an application is needed which can obtain, manage, and play
podcasts. It must then be able to parse a tracklist within a description, read or estimate
when each track is played, and display the current track to the user. It must also be able
to allow a user to sign into Last.fm or a similar service, and upload track metadata for
the current track when it is played. These core features are marked as high priority and
are grouped by their major IDs.

Other requirements would bring it more in line with features other podcast(or similar,
i.e. BBC Sounds) applications offer, like the ability to save a podcast for offline play,
organise podcasts in some way, or a particular episode. These are less important to the
functionality of the app, but as they would improve the user experience, I have still
included them albeit with a lower priority.

In the requirements table below, major requirements 1, 2 and 4 are implemented already
in standard podcast applications. Requirement 5 already exists in audio players that
implement Last.fm scrobbling. This application aims to bridge the gap between
requirement 5 and requirement 1, 2 and 4 through the implementation of requirement 3,
which is entirely novel.

Requirements table
ID Requirement Description Criteria Priority
1.0 The application must be able to

parse an RSS feed
A URL to an RSS feed is provided
and serialized to some kind of
Kotlin object

High

1.1 The application must be able to
store podcasts

Information contained in an RSS
feed can be stored and retrieved

High

1.2 The application must be able to
update a podcast with new
episodes and notify the user

When a new episode is published,
a notification is served within 1
hour and the stored podcast is
updated

Medium

2.0 The application must be able to
present stored podcasts and
episodes to the user

Stored podcasts and episodes
are viewable in the User Interface

High

2.1 Episode descriptions and
details must be visible

Episode descriptions are
viewable in the UI

High

2.2 All other details of a podcast
must be visible

All other details of a podcast are
viewable in the UI

Medium

2.3 Podcasts can be sorted, i.e. by
title, most recent episode date,
length

Podcasts can be sorted
ascending or descending by
parameters in the User Interface

Low

2.4 Podcasts can be favourited Podcast objects have an
additional “favourited” field, with
a separate view in the UI

Low

3.0 Episode descriptions can be
parsed, with Track objects
created and viewable

Episode descriptions are parsed
either when asked to by the User

High

Johnny Morrison-Howe UP926743

16

or when played. Tracks are
viewable within Episode Details UI

3.1 Track timestamps are
interpolated from any tracklists
detected

Podcast track timestamps are
interpolated and viewable in the
UI

High

4.0 Audio for an episode must be
able to be played

Episodes can be played in the
episode screen, and keep playing
in the background outside of it

High

4.1 Tracks in a podcast must be
displayed when they are
played

When playing a podcast, if its
description was successfully
parsed, track metadata must be
shown to the user either when it
is played or predicted to be
played if interpolated

High

4.2 Tracks must have controls to
adjust playback

There are controls shown when
playing an episode, for example:
play/pause, skip forward/back

High

5.0 A user must be able to log in to
Last.fm

A log in page is shown to the user,
and they can log in. Their account
details are shown in the UI.

High

5.1 When played, a track’s
metadata must be uploaded to
Last.fm or similar and
associated with the user

When a track is played at least
halfway (Last.fm, 2023), details
must be uploaded.

High

Johnny Morrison-Howe UP926743

17

User Interface Design
Material Design 3 is the current recommended design language for Android
development (Android, n.d.). As such, although I used the design-language-agnostic
Balsamiq Wireframes (Balsamiq, 2023), I adhered to the use of Material Design
components throughout my User Interface mock-ups. I designed four main screens:

Browsing all podcasts (main screen)
When viewing podcasts, I created a
simple list which will hold a vertical
layout of Cards2. The Top App Bar3
contains the name of the application,
along with Trailing Icons for secondary
functions like removing and sorting
podcasts.

A Floating Action Button4 provides
access to the main operation of this
screen (other than browsing podcasts)
– adding a new podcast from an RSS
feed.

Player
Bottom Sheets5 are typically used for
data and controls that must persist
throughout the app – all three podcast
applications I reviewed contained
bottom bars for playback. I have
persisted a bottom sheet everywhere
in application when an episode is
playing, containing the album art,
episode title, the currently playing (or
estimated) track metadata, along with
controls like play/pause and a progress
bar. Although not included in the mock-
ups, it would also be useful to display
an icon representing the scrobble
status of a track (i.e. if it has been
played for long enough to have the
metadata uploaded to Last.fm).

2 Cards: https://m3.material.io/components/cards/overview
3 Small Top App Bar: https://m3.material.io/components/top-app-bar/specs
4 Floating Action Button: https://m3.material.io/components/floating-action-button/overview
5 Bottom Sheet: https://m3.material.io/components/bottom-sheets/overview

Figure 6

https://m3.material.io/components/cards/overview
https://m3.material.io/components/top-app-bar/specs
https://m3.material.io/components/floating-action-button/overview
https://m3.material.io/components/bottom-sheets/overview

Johnny Morrison-Howe UP926743

18

Adding a podcast

Figure 7

I have used the same Small Top App Bar, with a standard text box and buttons beneath.
When an RSS feed is inputted, the screen shows a preview of the episodes that are in
the podcast, and the Add button is enabled.

Browsing episodes
The mock-up for browsing episodes is very similar to the main screen,
as it is simply navigating a lower level of the tree. I have omitted the
FAB as it would create the wrong associations (it is not possible to
add just one episode).

Figure 8

Johnny Morrison-Howe UP926743

19

Episode details & tracklist

Figure 9

This page swaps out the Top App Bar for a custom component containing main
metadata about the episode, like the episode title and date published. Underneath I
used Tabs for the layout – one with the podcast’s description, and another with the
tracks parsed for the podcast.

User Flow
I created two User Flow diagrams using draw.io to illustrate adding a podcast and
playing an episode.

Johnny Morrison-Howe UP926743

20

Adding a podcast

Figure 10

Playing an episode

Figure 11

Johnny Morrison-Howe UP926743

21

Components
Overview

I used PlantUML (PlantUML, 2023) to draw
two diagrams using the C4 Model (Brown,
2011). Figure 12, left, is a Container Diagram
showing a high-level view of the application
and how it interacts with outside services.
Figure 14, at the end of this chapter, is a
Component Diagram showing more in depth
how each part of the application interacts
with each other.

The MainActivity is what the user first sees
on startup and holds the User Interface. It
deals with parsing RSS feeds, storing the
data and then fetching it again.

The Android Runtime (ART) garbage collector
often prevents foreground activities running
in the background, so the actual media player
is run in a service instead. A service is created
by the system when the application is
launched, and then started by the activity
through an intent, i.e., when an episode is
staged to be played. The activity can then
communicate with the service via Android.

The podcast host is used in two cases – first
to obtain the RSS feed, which contains the metadata and episode structure, and
secondly when an episode is streamed, where it hosts the audio files.

Activity
Jetpack Compose is a declarative UI framework (Android Developers, 2023) – that is,
each component contains both its layout and logic. This contrasts with Android’s Views,
where layout is defined separately to logic, in XML resources. The higher-level name for
an object shown to the user is a component, whereas the name for the actual code is
called a Composable. Compose is started in MainActivity’s OnStart() method, where it
is given a Material parent component to define styles. All components are what’s known
as a Composable Function – annotated with @Composable and calling other
Composable Functions within.

PodcastScrobbler Composable
The PodcastScrobbler Composable acts as the root of the tree (other than Material) and
contains state that is universal across the app, i.e., a manager for storage, the current
navigation position, and a reference to the service for player access. The most
important component is the NavController (Android Developers, 2022), which stores a
route as a string and shows the corresponding pane. This allows for routes to be defined
similarly to a web address, including with parameters. One of four components can be

Figure 12

Johnny Morrison-Howe UP926743

22

shown at one time (Podcasts List, Episodes List, Episode Details, and Add Podcast),
however when navigating down the tree components above it are kept in a Stack
structure. When the user navigates back, the highest component on the stack (the
current screen) is popped, revealing the one underneath(the last screen shown).

The other visible UI element is the BottomAppBar which is a parameter to the
PodcastScrobbler component rather than the body. This is a similar component to the
one found in Google Maps, modified to not extend or contract. It holds one component,
Controls.

Service
As described in the overview, the application needs a service as a “sidecar” to perform
tasks like playing audio when the activity is not visible to the user. The service in this
case extends the MediaSessionService class, part of the Jetpack Media3 API (Android
Developers, 2023). It contains functions for staging and playing audio, interacting an
instance of Player and Session. Figure 13 (Android Developers, 2022), below, illustrates
the relationship between a MediaSessionService and the Activity that communicates
with it.

Figure 13

The service also contains a reference to the podcast episode. This allows the service
to parse the description and add tracks once playback has commenced. As the service
is always running, it sends metadata to Last.fm as opposed to the activity, which could
be inactive when playback has reached a point that triggers a Scrobble.

A binder is used to expose the service’s public functions. The activity requests a
reference to the service via Android System, and then instantiates its own binder which
represents the service and can be interacted with.

Data classes
Podcast
Holds metadata for the podcast, as well as an array of Episodes.

Episode
Holds metadata for the episode, as well as audio file links, a function that invokes the
tracklist parser on its own description, and an array of Tracks.

Track
Holds the title, artist, record label and the time it starts in an episode.

Johnny Morrison-Howe UP926743

23

Utilities
Although unrelated in function, the last three classes are packaged together as they are
not dependent on the lifecycle of either the service or the activity but must be
accessible by both.

Podcast Manager
A reference to this class is held in the root composable, PodcastScrobbler. It is
responsible for serializing and deserializing a list of Podcast objects using JSON. JSON
allows for storage in the same structure as the RSS feed, however unlike XML, can be
done automatically using Kotlin’s Serialization library (Kotlin, 2023). I chose JSON from
the available options as it was the only one not marked Experimental. Although binary
formats like Protocol Buffers are faster than JSON (Audie Sumaray, 2012), the
difference is smaller with text and JSON is human readable, making it more useful when
debugging.

RSS To Class
This class contains logic for parsing an RSS feed from XML to a Podcast object
populated with Episode objects.

Description to Tracks
The most important class in the project, containing functions which parse a description
and returns a list of Tracks if successful.

Johnny Morrison-Howe UP926743

24

Component Diagram

Figure 14

Johnny Morrison-Howe UP926743

25

Implementation
Tooling
Kotlin
I decided to use Kotlin, because as of Google I/O 2019 it was announced that Android
would be “increasingly Kotlin-First” (Android Developers, 2023). Upon starting this
project I had not used Kotlin; I was already familiar with Java, however had become
accustomed to conveniences from Dart and JavaScript (in React), like declarative UI,
state management and concurrency(i.e. async await and Futures).

Kotlin provides these features, through Jetpack Compose and coroutines (Kotlin, 2023).
It also has full interoperability with Java, being ran on the JVM. This makes it very
suitable for Android development as I can interact with all Android libraries without a
bridge like Dart requires (Flutter, 2023).

Android Studio
I used Android Studio as it is the recommended IDE for Android. Being built by Kotlin
creator JetBrains, it also includes first-class support for the language.

Target device
Rather than use an emulated Android device, I installed the drivers and connected my
own device (a Google Pixel 6) as it can run the application faster and allows for better
testing of touch-based inputs.

Repository
I used Git to create a repository, with changes pushed to the remote (in GitHub). The
repository is available at https://github.com/Dexyboiiii/Podcast-Scrobbler .

Data classes
I created the 3 data classes listed above (Podcast, Episode and Track). For easier
debugging they have custom toString() methods(Figure 15) and are annotated with
@Serializable for native Kotlin serialization.

https://github.com/Dexyboiiii/Podcast-Scrobbler

Johnny Morrison-Howe UP926743

26

override fun toString(): String {
 var strToReturn = """

 Title: $title

 Description: $podcastDesc

 Link: $link

 Author: $author
 """.trimIndent()
 var episodesToString = ""
 if (episodes.isNotEmpty()) {
 for (i in episodes.indices) {
 episodesToString += episodes[i].toString()
 }
 strToReturn += "\n\nEpisodes: $episodesToString"
 }
 return strToReturn
}

Figure 15

Parsing an RSS feed
RSS feeds are XML documents with channel elements(metadata) and several items,
denoted with the <item> tag (RSS Advisory Board, 2009). For a podcast, the Media RSS
format is used, which also includes an <enclosure> tag within each item. XML is well-
supported in Java, and because Kotlin has full Java interop I was able to import the
org.w3c.dom module and interact with it as if I were writing in Java. I wrote a standalone
Kotlin function (outside of an Android project) to test the functionality.

Issues with XML
The first issue I came across was ampersands (&) not being parsed correctly, as some
versions of XML, notably HTML up to version 4.0, use ampersands as the escape
character (World Wide Web Consortium, 2004). Unescaped ampersands would cause
the parser to throw SAXExceptions, so I used a Regular Expression (RegEx) to replace
these with & .

fileContent = fileContent.replace("&(?!(\\w|#)+;)".toRegex(), "&")

Figure 16

Iteration station
I instantiated a skeleton Podcast object and obtained a list of every element in the
document. Iterating through the list, I put the elements’ text in the corresponding field,
creating a new Episode object each time the loop encountered an <item> tag. The
completed Podcast object is returned.

Parsing the description
Descriptions for podcasts are very unstructured, however a tracklist is typically the
most structured part of it. Most are after a few lines of description, so I need to first
take the tracklist out of the podcast, and then analyse that line by line. The two podcasts

Johnny Morrison-Howe UP926743

27

I first used were Mind Over Matter by Embliss, and The Melodic Sessions by
Prototype202.

Regular expressions
The attribute in common for tracklists with these podcasts is that it is a title, a hyphen,
an artist, and sometimes a label surrounded with square brackets. The first task is to
take the linebreak tag in XML, (
,
 and
) and convert it to a newline in
Kotlin, \n. Any other HTML tags for emphasis or lists are also removed.

// Removes p tags and turns XML line breaks into Kotlin line breaks
description = description.replace("
|
|
".toRegex(), "\n")
description = description.replace("<.*?>".toRegex(), "")

Figure 17

The string is then split by its newlines into an array of strings. The array is iterated and
each string tested for whether it counts as a valid track in the list using the criteria
above. If the line passes (there’s text either side of a hyphen), then the current line is
logged as the start of the tracklist and a counter of tracklist length is incremented by 1.
Since it’s possible to have a non-tracklist line with a hyphen in it, there needs to be at
least 3 lines in a row (i.e. the counter is at least 3) with a hyphen to be accepted as a
tracklist. If numbering on the tracklist is present, then it’s removed. The tracklist is now
stored in a separate string array.

To get the actual metadata out of the lines, I wrote RegEx to split each line up into
groups, instantiate a Track object with the data and add it to the Track array. The
resulting log is printed to the console, and then a Triple containing the tracks array, the
parse state (denoting whether it was successful or not) and the log is returned. Figure
18 shows an extract of this code.

Johnny Morrison-Howe UP926743

28

val artistTrackSplitterPattern = Pattern.compile("(.+)(– | -)(.+)")
var artistTrackSplitterMatcher: Matcher
val labelScraperPatternPattern = Pattern.compile("(.+)(– | -)(.+)(\\[)
(.+)(])")
var labelScraperPatternMatcher: Matcher
for ((index, unsplitTrack) in rawTracklist.withIndex()) {
 artistTrackSplitterMatcher =
artistTrackSplitterPattern.matcher(unsplitTrack)
 labelScraperPatternMatcher =
labelScraperPatternPattern.matcher(unsplitTrack)
 // If there is a record label present...
 if (labelScraperPatternMatcher.matches()) {
 val trackObj = Track(
 labelScraperPatternMatcher.group(1),
 labelScraperPatternMatcher.group(3),
 labelScraperPatternMatcher.group(5),
 -1
)
 tracks.add(trackObj)
 // If there isn't a record label present...
 } else if (artistTrackSplitterMatcher.matches()) {
 val trackObj =
 Track(artistTrackSplitterMatcher.group(1),
artistTrackSplitterMatcher.group(3))
 tracks.add(trackObj)
 } else {
 getTracksErrorLog += """

 Could not parse: $unsplitTrack
 """.trimIndent()
 }
}
println(getTracksErrorLog)

Figure 18

Persistent storage
To manage podcasts, I created a static utility class to serialize an array of Podcast
objects into JSON and save the resulting string to storage. It also deserializes the string
in storage when the current list is called and can also perform additions and deletions
to the current Podcast array, which are then saved to storage. Figure 19 shows the

Johnny Morrison-Howe UP926743

29

process for retrieving podcasts from storage. Both the add and remove functions save
the list of podcasts to storage.

fun retrievePodcasts(): SnapshotStateList<Podcast> {
 println("Retrieving podcasts! ${this.context.toString()}")
 val fileDir = context.filesDir
 if (File("$fileDir/podcasts.json").isFile) {
 try {
 return Json.decodeFromString<List<Podcast>>(
 string = File("$fileDir/podcasts.json").readText(
 Charsets.UTF_8
)
)
 .toMutableStateList()
 } catch (e: Exception) {
 println(e.message)
 }
 }

 try {
 File("$fileDir/podcasts.json").createNewFile()
 } catch (e: Exception) {
 println(e.message)
 }
 return mutableStateListOf<Podcast>()
}

Figure 19

Persistence is key
One issue I had when rendering lists of Episodes was the names being cut off. I was
using the episode title as the key, which seemed logical as no podcast would have more
than one episode with the same name - they’re always numbered, i.e. Mind Over Matter
#151. However, the Navigator, explained later, uses the hash sign (#) as a reserved
character in routes, meaning either the route would not resolve or the number would be
cut off in the title, making the names often not unique and the list of composables no
longer consistent. I solved this by creating a primary key field for the Episode class and
generating a key during parsing within RssToClass.

MainActivity and PodcastScrobbler
In Android Studio created a project containing an Android View with Compose. This
creates a root composable which is called by MainActivity – I named it
PodcastScrobbler, as the name of the application. With Compose you are supposed to
move state higher up the component tree so that it can be viewed by all composables
that need it. This cuts down on components with their own state, which can lead to
more difficult refactoring and tracing of state. As such, the PodcastScrobbler
component contains:

- A reference to the Context (an object provided by Android that contains details
of the current session)

- An instance of PodcastsManager, which deals with storing and retrieving
podcasts

Johnny Morrison-Howe UP926743

30

- The state of the BottomSheetScaffold
- The state of the NavController
- A reference to MusicPlayerService
- Attributes from MusicPlayerService that must update state when changed i.e.

play state and metadata

Remember
Although calculations are typically ran every time a composable is redrawn, the
remember API (Android Developers, 2023) allows the result of a calculation to be stored
on the first draw and retrieved on every subsequent draw. When a MutableState object
is stored, the component is redrawn every time the object is mutated. Figure 21 shows
how the remember API is used to store variables in PodcastScrobbler.

val navController = rememberNavController()
val bottomSheetScaffoldState =

rememberBottomSheetScaffoldState(SheetState(skipPartiallyExpanded
= true, skipHiddenState = true, initialValue =
SheetValue.Expanded));

val context = LocalContext.current
var pm = remember { PodcastsManager(context) }
var podcastsSaved = remember { pm.savedPodcasts }

Figure 21

Scaffold
The scaffold is the first component to
display something on the UI. It holds
a top bar (in this case, a
SmallTopAppBar), a floating action
button and a bottom sheet. Figure 20
shows how the scaffold lays out
Composable parameters.

Navigation
The NavController above keeps track
of the current route – this is a string
with the name of the screen to be
displayed, and parameters after it,
similar to a HTTP URL. The NavHost
component reads the route on each
redraw and displays the
corresponding composable to the
route. Parameters in the route are
also passed to the composable.
Figure 22 shows the process for the
EpisodeDetails composable – note
the {podcastTitle} and {episodeTitle}
parameters passed through the route.

Figure 20

Johnny Morrison-Howe UP926743

31

composable(route =
"${Screen.EPISODE.name}/{podcastTitle}/{episodeTitle}", arguments =
listOf(
 navArgument("podcastTitle") { type = NavType.StringType },
 navArgument("episodeTitle") { type = NavType.IntType }
)) {backStackEntry ->
 EpisodeDetails(service,
backStackEntry.arguments?.getString("podcastTitle"),
backStackEntry.arguments?.getInt("episodeTitle"), podcastsSaved,
navController)
}

Figure 22

Browsing podcasts
The default screen is the PodcastsList composable, which requests a list of Podcast
objects from the PodcastsManager. It has two buttons, Add and Remove. The first
opens the screen below, and the second toggles the action performed by tapping on a
podcast Card between opening the episodes list and invoking PodcastsManager to
remove it from the list and update the persistent storage with the new list.

Adding a podcast
The AddPodcast composable takes two parameters, a reference to the
PodcastsManager and the NavController. After taking a URL to an RSS feed, it starts a
suspended (async) function, which in turn uses Volley (Google, 2022) to create a HTTP
request. The body of the response is passed to the rssToClass utility, described in
Parsing an RSS feed. Once these both resolve, a flag is set that triggers recomposition
of the screen and renders a set of Cards representing each Episode. The Add button is
also enabled, which if tapped saves the new Podcast object to persistent storage via
PodcastsManager.

Browsing episodes
When routed to EpisodesList, the NavHost interpolates the podcast title given to it in
the route and passes it as a parameter to the EpisodesList composable.

The EpisodesList composable was implemented in the same way as the PodcastsList
composable, with a scrollable column of Cards. Due to the size difference (the list of
podcasts rarely exceeded 5, whereas one podcast can easily have 150+ episodes), this
caused performance issues – for Mind Over Matter the framerate hovered around 30,
but the display on the device is 90Hz. The solution to this was to create a LazyColumn
composable, which takes an array of objects and instructions to create items in the list
for each object. For each scroll position, only the items on screen and slightly off it are
drawn, and when scrolled they’re drawn and discarded on demand. This resulted in the
performance hitting 90 frames per second consistently and dropped loading time for
the composable significantly. Figure 23 and Figure 24 show the difference between the
Column in PodcastsList and the LazyColumn in EpisodesList.

Johnny Morrison-Howe UP926743

32

Column(Modifier.verticalScroll(rememberScrollState(), enabled = true)) {
 for (podcast in podcasts) {
 PodcastCard(podcast, remove, pm, navController)
 }
}

Figure 23

LazyColumn(Modifier.verticalScroll(rememberScrollState(), enabled =
true).height(600.dp)) {
 items(podcast.episodes) {episode ->
 EpisodeCard(podcast, episode, navController)
 }
}

Figure 24

Episode details
The EpisodeDetails composable takes parameters in the same way as EpisodesList,
with another layer. It contains a custom composable, EpisodeDetailsHeader, which
displays the album art, metadata, and buttons to parse the tracklist and start playback.
Below it is a TabRow that allows for selection of the main component – either the
episode description or a list of parsed Tracks. The episode description is displayed as

Johnny Morrison-Howe UP926743

33

HTML in a traditional Android View to allow for formatting to be retained if present.
Figure 25 shows EpisodeDetails in action displaying the description and tracks tab.

Figure 25

Johnny Morrison-Howe UP926743

34

Playing media
Media3
Android has had numerous methods of playing media – MediaPlayer was there first but
is now not recommended for new development, MediaSession is more modern, and the
third-party ExoPlayer is more feature-rich than Android’s own APIs (ExoPlayer, 2023).
In 2021 as part of the Android Jetpack initiative, another API was introduced – Media3
(Android Developers, 2021). It promised to unify ExoPlayer and MediaSession, with a
new MediaController that shared the same interface (Player) as ExoPlayer. This resulted
in less confusion as connectors would no longer be required to bridge a MediaController
and MediaSession.

Creating a service
To perform tasks (like playing audio) when the activity isn’t in the foreground, or keep it
persistent across different app screens, a service must be used. An instance of the
service is created on app launch, and the service can be started by issuing an Intent to
the system within the activity.

I extended the MediaSessionService class so that I could interact with the player. The
overridden onStartCommand function takes the content of the Intent, an Episode
object, prepares the player, and starts playback using the audio URL provided.

In MediaSessionService, the onStartCommand is overridden. Messages usually
processed by the system are still processed, and messages sent by my activity (either
start or pause) are handled by the rest of the function.

Serialization struggles
Intents only allow for data that implements the Serializable class in Java, whereas my
classes are annotated with @Serializable from Kotlin. This is one of the (admittedly few)
issues with Kotlin-Java interop, as it would be redundant to use both serialization
methods.

My solution for this is to serialize the class into JSON in the activity and then deserialize
it back into an instance of Episode in the service, as is done with the PodcastsManager
for storage.

Posting a notification and starting playback
For a service to run in the foreground (i.e. not get killed by the system), it needs to post
an active notification. I create a notification with the title of the podcast and use it to
start a foreground activity. Figure 26 shows this process.

As the instance of Player is already instantiated, I assign it a MediaItem with the URL of
the audio in the Episode and set playWhenReady to true. Once the Player buffers
enough audio it starts playing immediately.

Johnny Morrison-Howe UP926743

35

// Creating a notification channel if one doesn't already exist
val notificationChannel = NotificationChannel(
 "podcast_playback",
 "Podcast Playback",
 NotificationManager.IMPORTANCE_LOW
)
notificationManager.createNotificationChannel(notificationChannel)

// Building a notification with the notificationChannel id
val notificationBuilder = NotificationCompat.Builder(this,
notificationChannel.id)
 .setSmallIcon(androidx.media3.session.R.drawable.media_session_servi
ce_notification_ic_music_note)
 .setContentTitle(episode?.title)
val notification = notificationBuilder.build()

// Instructing Android to start a foreground service with the
notification
startForeground(1, notification)

Figure 26

Keeping track of the current track
For a tracklist where the time each track starts is unknown, the start times are
interpolated, i.e. for a podcast of length 3500 seconds, each track is assumed to be 350
seconds long (for progressive house this is usually the case, as there are few to no
interruptions by the DJ). Because the episode’s length is not stored in the RSS feed, it
can only be obtained on first playback.

I assign an event listener to the player, and when playback starts the service attempts
to parse the tracklist if it has not been done already, and then assigns each track the
time it should start.

If this is successful, a loop is started using coroutines so that it does not block the main
thread. The current track’s playback time(stored in a map) is incremented every time
the loop runs, and once the track has been sufficiently played (halfway) it is marked to
be scrobbled. To keep the notification up to date, its title is updated each time the loop
runs with the title and artist of the track. Figure 27 shows the loop, and Figure 28 shows
the output in Logcat when the player moves from a track that has been sufficiently
played to the next track. Figure 29 shows the notification that is shown while an episode
is playing, containing the current track.

I was not able to integrate with Last.fm in the time allotted, however a request would be
sent with track metadata at this point once the track had been flagged as sufficiently
played.

This method has the advantage of tracking playback time per track as opposed to
counting the entire episode’s playtime, however it still doesn’t address that if the user
were to rewind to a previously played track, it would not be flagged again as the loop
and corresponding map of tracks are only instantiated when playback is started and not
when it is resumed.

Johnny Morrison-Howe UP926743

36

fun startTrackingLoop() {
 // Start the following loop as a coroutine, so it does not block playback
 CoroutineScope(Main).launch {
 while (true) {
 delay(1000)
 if (player.isPlaying) {
 val ct = currentTrack
 println("${ct?.title} - ${ct?.artist}")
 if (ct != null) {
 // Get the amount of time the current track has played for,
incremented by 1000ms
 // If an entry does not yet exist, create one with a value
of 0ms
 var trackTime =
 tracksThisSession.computeIfAbsent(ct) { 0 } + 1000
 // Update the value in the map
 tracksThisSession.put(ct, trackTime)
 // Get the amount of time the track should take to play
 val trackLength: Long? =
 (episode?.tracks?.get(episode?.tracks!!.indexOf(ct) +
1)?.timestamp
)?.minus(currentTrack!!.timestamp)
 println("${trackTime}/${trackLength}")
 // If more than 50% played, update the user.
 if (trackTime > trackLength!! / 2) {
 println("Track has been sufficiently played!")
 }
 // Update the notification with the current track
 postNotification(ct)
 }
 }
 }
 }
}

fun postNotification(track: Track) {
 // Get notification manager
 val notificationManager = getSystemService(Context.NOTIFICATION_SERVICE) as
NotificationManager

 // Build notification for the playback notification channel with the current
track and podcast title
 val notificationBuilder = NotificationCompat.Builder(this,
"podcast_playback")
 .setSmallIcon(androidx.media3.session.R.drawable.media_session_service_n
otification_ic_music_note)
 .setContentTitle(episode!!.title)
 .setContentText("${track.title} - ${track.artist}")

 // Post the notification. As the id is the same as the initial notification,
it is updated.
 notificationManager.notify(1, notificationBuilder.build())
}

Figure 27

Johnny Morrison-Howe UP926743

37

Figure 28

Figure 29

Playback Controls
Binding the service
In the MainActivity the service is bound to the activity, making data transferrable
between the two without needing to use intents. The PodcastScrobbler composable
contains listeners that update variables within MutableState objects. These variables
(i.e. playback state, episode metadata) must be stored in MutableState objects so that
the UI updates with said state – it will not update based on the service’s own variables.

Controls Composable
The Controls composable keeps references to these values, and so recomposition
occurs when they’re updated. It has one button for playing and pausing, which updates
both the player and its own state. Figure 30 shows the Controls composable while a
podcast is playing.

Figure 30

Johnny Morrison-Howe UP926743

38

Utilising Material Design
Colour schemes
Material recommends (Google, 2021) the use of
the Material Theme Builder to generate colour
themes, and then calling their values by their
semantic name – i.e. Primary for background and
OnPrimary for text.

Dynamic Colour
In 2021 Google unveiled Material You (Google,
2021), with the headline feature being Dynamic
Colour. This uses the current wallpaper set by
Android to generate a colour palette, which apps
on the device can use for theming. The theme I
defined checks for Dynamic colour compatibility,
and if it exists applies that instead of the colour
theme I created. As I used semantic naming rather
than hardcoding the colours, the UI is still clear
and readable no matter what colours are in the
theme. Figure 31 shows the main screen in both
light and dark mode when the system wallpaper is
set to green or pink wallpapers.

Implementation conclusion
Due to time constraints, I stopped development
after implementing material design. Overall I had

created an application that met most of the requirements given and would consider it
mostly a success as it has all the functionality of fetching, storing, retrieving, browsing,
playing and of course showing the current track. However I was not able to implement
Last.fm integration, nor parsing track times from a description (times are estimated and
interpolated along the track length instead).

Development experience
I found writing with Kotlin to be incredibly intuitive – Kotlin lived up to the other
languages I’d used with more modern features6, however had unparalleled
interoperability with Java. Both when interacting with Media3’s Player and Android’s
intent system, the experience was so frictionless I first assumed they’d both been
implemented in Kotlin somehow, yet they both turned out to be implemented with Java.

I also found Android Studio to be very easy to use – I had used Visual Studio Code for
most of my projects(and Eclipse when absolutely required) up until now, which while
not advertised as an IDE (Microsoft, 2023), had many of its functions. The experience
with Android Studio was more cohesive, with many more code suggestions than VS
Code. It did however run slower, and I found Git integration to be much more clunky as
it separates commits and history into two completely different panes.

6 Async programming, null safety, hot reload, declarative UI, to name a few.

Figure 31

Johnny Morrison-Howe UP926743

39

I have mixed opinions of Jetpack Compose, however. The general concepts were easy
to grasp, especially coming from React and Flutter, however documentation was not
nearly as fleshed out and some use cases had not been covered. Playing media was
one of these – there are no pages in Compose’s documentation for this use case, which
is important as all documentation for playing media relates to Android’s old Views
architecture. I found it difficult to make components react to state in the Player, as there
is no way to call for recomposition like there is in React. Media3 also doesn’t contain
any pre-built components for Compose like it does for Views (Android Developers,
2021), which is confusing as both Compose and Media3 are initiatives under the Jetpack
name.

In Compose’s favour, the UI certainly would’ve taken me longer using the Views
architecture given my experience with declarative UI (I have built websites in HTML with
JavaScript, which is more like Views, however these have only had very basic
interactivity). I came across fewer errors than I did in general than Flutter or React, but
this may be down to me having previous experience with declarative UI. It also enabled
me to learn Kotlin, language new to me that I’m glad to have tried.

If I were to do the implementation again, I would see how easy it is to build with Flutter
or React – at the start of the implementation I criticised them for not running natively on
Android and so potentially having a more convoluted method of creating services and
calling native Android methods, but I would be interested to actually see for myself
whether they’d be more complex.

Effort distribution
As I was new to native Android development, Kotlin and Jetpack Compose, I did not
know how long I would be spending on each aspect of development. I had expected to
spend about half my time writing both parsers and the podcast storage logic, however
working on UI and media playback ended up taking up most of my time instead. Perhaps
this was due to me needing to learn a new UI framework, or perhaps this was the UI
framework itself. Certainly, if I were to do this again, I’d plan for the UI to take a lot
longer.

Johnny Morrison-Howe UP926743

40

Testing
RSS feed parsing
In my development experience, PodcastScrobbler was able
to parse the RSS feed of every podcast I gave it. For
evaluation, I tried to parse the RSS feeds of the top 5 most
popular podcasts in the UK (Chartable, 2023). None of these
are DJ sets, however the parser should still work.

The chart below (and Figure 32) show the results of this test
– all podcasts’ RSS feeds were parsed successfully.

One thing to note is that cover images did not appear – the
Podcasts List uses the image of the most recent episode,
however the podcasts I tested here did not have per-
episode images, rather one image for the whole podcast.

Rank Title Publisher RSS

Parsed
Reference

1 Leading Goalhanger Podcasts Yes (Goalhanger
Podcasts,
2023)

2 The Rest Is Politics Goalhanger Podcasts Yes (Goalhanger
Podcasts,
2023)

3 Pod Save the UK Crooked Media Yes (Crooked
Media,
2023)

4 Up Front with Simon Jordan Folding Pocket and
William Hill

Yes (William Hill,
2023)

5 The Diary Of A CEO with
Steven Bartlett

Steven Bartlett Yes (Bartlett,
2023)

Figure 32

Johnny Morrison-Howe UP926743

41

Podcast storage
For every podcast tested, it persisted between sessions and device restarts. Deletion
persists also, as well as tracklists parsed from descriptions in the Episode Details
screen. Although descriptions are parsed when playback is started, the times do not
persist as the service does not have a reference to the PodcastsManager.

Although metadata like publisher and dates for each episode are viewable, I did not
implement podcast-wide images – only per-episode. This means that some podcasts
that do not define an image for each episode show with no image at all. I was also not
able to implement favouriting or sorting.

Parsing descriptions
I added six podcasts that had description structures suitable for parsing. They are not
chosen with a methodology i.e. 5 most popular, as they are a niche in podcasting; In the
Apple Podcasts GB Music charts, only 1 of the 20 most popular is a DJ set with a
tracklist, Defected Radio by Defected (Chartable, 2023).

For each podcast, I attempted to parse the descriptions of the most recent 10 episodes.

Title Publisher Descriptions Parsed / 10 Reference
Mind Over Matter Embliss 10 correct (Brandwijk,

2022)
The Melodic Sessions Prototype20

2
10 correct (Prototype202

, 2023)
Alexey Sonar Alexey Sonar 10 correct (Sonar, 2023)
Defected Radio Defected 9 slightly incorrect, 1 had

no tracklist in the
description

(Defected,
2023)

AVICII FM Avicii 1 correct, 9 incomplete (Bergling,
Avicii FM,
2018)

Clapcast from Claptone Claptone 10 correct (Claptone,
2023)

Johnny Morrison-Howe UP926743

42

In most podcasts tested, PodcastScrobbler accurately obtained track metadata,
however two notable exceptions were Defected Radio and Avicii FM.

The former had track start times in the description, which I did not implement. This
resulted in tracks parsed with the start time included, as shown in Figure 33. No other
podcasts I assessed the parser on included times, and as it was not one I originally wrote
the parser against, no reference for a podcast with times.

Figure 33

The latter, Avicii FM, had a very peculiar issue – the person who wrote the tracklist used
a different type of dash between tracks in the tracklist, rendering parsing impossible
(only if more than 3 tracks in a row shared the same track-artist delimiter would a
tracklist appear, and even then, only those 3 would show). Although it may be very
difficult to discern in the images provided, Figure 34 shows a Hyphen character
between track and artist, whereas Figure 35 shows an En Dash character. These are
both from the same episode’s description.

Figure 34

Figure 35

Playing audio
I was able to implement playing episodes, along with background playback, as shown
in Figure 29. Descriptions are automatically parsed if not done so already, and the
estimated track is displayed in a notification to the user.

There are also basic(play/pause) playback controls, available across the app in the
bottom bar – shown in Figure 30. New episodes can be played, however only when the
current episode is paused (I was not able to determine the cause of this).

Johnny Morrison-Howe UP926743

43

Uploading metadata
I was not able to implement Last.fm integration in the time that I had – as such, although
the application is still named PodcastScrobbler, it is currently unable to do the last
part(although it is as close as it can get). How this would be implemented is described
in the Future Work section.

Johnny Morrison-Howe UP926743

44

Against requirements
ID Requirement

Description
Criteria Priority Implemented? Comments

1.0 The
application
must be able
to parse an
RSS feed

A URL to an RSS
feed is provided
and serialized to
some kind of
Kotlin object

High Yes

1.1 The
application
must be able
to store
podcasts

Information
contained in an
RSS feed can be
stored and
retrieved

High Yes

1.2 The
application
must be able
to update a
podcast with
new episodes
and notify the
user

When a new
episode is
published, a
notification is
served within 1
hour and the
stored podcast
is updated

Medium No Although not possible with this
iteration, refresh functionality(from
storage) is built in and adding
fetching of podcasts would be
possible.
Automatic fetching of new episodes
would require integration with
Android’s Job Scheduler.

2.0 The
application
must be able
to present
stored
podcasts and
episodes to
the user

Stored podcasts
and episodes
are viewable in
the User
Interface

High Yes

2.1 Episode
descriptions
and details
must be visible

Episode
descriptions are
viewable in the
UI

High Yes

2.2 All other
details of a
podcast must
be visible

All other details
of a podcast are
viewable in the
UI

Medium Somewhat Podcast metadata and descriptions
are visible, however depending on
the podcast, cover images are not
viewable as they’re only stored
against episodes.

2.3 Podcasts can
be sorted, i.e.
by title, most
recent episode
date, length

Podcasts can be
sorted
ascending or
descending by
parameters in
the User
Interface

Low No

2.4 Podcasts can
be favourited

Podcast objects
have an
additional
“favourited”
field, with a
separate view in
the UI

Low No

3.0 Episode
descriptions
can be parsed,
with Track
objects
created and
viewable

Episode
descriptions are
parsed either
when asked to
by the User or
when played.
Tracks are
viewable within
Episode Details
UI

High Yes Parsing tracklists with times is
possible and works, however times
appear within the track title.

Johnny Morrison-Howe UP926743

45

3.1 Track
timestamps
are
interpolated
from any
tracklists
detected

Podcast track
timestamps are
interpolated and
viewable in the
UI

High Yes

4.0 Audio for an
episode must
be able to be
played

Episodes can be
played in the
episode screen,
and keep playing
in the
background
outside of it

High Yes

4.1 Tracks in a
podcast must
be displayed
when they are
played

When playing a
podcast, if its
description was
successfully
parsed, track
metadata must
be shown to the
user either when
it is played or
predicted to be
played if
interpolated

High Yes

4.2 Tracks must
have controls
to adjust
playback

There are
controls shown
when playing an
episode, for
example:
play/pause, skip
forward/back

High Somewhat Play/Pause is functional, however
there are no playback progress bar
controls.

5.0 A user must be
able to log in to
Last.fm

A log in page is
shown to the
user, and they
can log in. Their
account details
are shown in the
UI.

High No

5.1 When played,
a track’s
metadata must
be uploaded to
Last.fm or
similar and
associated
with the user

When a track is
played at least
halfway
(Last.fm, 2023),
details must be
uploaded.

High No

I was able to complete most requirements with a priority of High, apart from Last.fm
integration. I’m glad to be able to say that the core idea of taking a podcast, being able
to play it, and having the current track displayed does work well. Most other features
like favouriting and ordering podcasts, while nice to have, are not essential to the
functionality of the app.

Although not listed in the requirements, I implemented Material Design components
every step of the way, as well as dynamic colour and light/dark modes. As a result,
PodcastScrobbler looks at home on Android 13, where it’s still a rarity for third-party

Johnny Morrison-Howe UP926743

46

applications to use these features due to the higher target API required to implement
them (Toombs, 2022).

Project Management

Methodology
The requirements for my project were very unlikely to change in the timeframe, and
there’s a clear scope, so I opted to use a Waterfall methodology. Given I am not working
part of a team or in a company structure, less emphasis can be given on communication,
a strong tenet of methodologies like Agile (Laoyan, 2022). Waterfall is one of the most
straightforward methods, with planning done in advance before development starts. It
generally contains the following steps (Leeron Hoory, 2022):

1. Requirements gathering
2. Design
3. Implementation
4. Verification
5. Maintenance

As project maintenance is not part of the scope of my requirements, I implemented only
the first four steps. I also added extra steps for tasks like writing the report. I created a
Gantt chart to show expected completion dates of required tasks.

Figure 36

This project requires the use of UI mockups, as well as architecture planning, to decide
how both the logic and layout interact with eachother. It is likely to require many
components, so I aimed to have plans completed by the time I properly started
development. I intended to start development just before planning is complete, so if it’s
apparent early on that I misjudged something that affects the project plan, I could
incorporate it.

As the progress demo was due early February, I planned to be well-into development
by that point. As recommended by my supervisor, I took development notes throughout
the project ready for the report.

Although Waterfall would typically indicate that I complete my project before I start the
report properly, I aimed to start it while I was still implementing the project so that I
could document earlier stages like UI planning and the high-level component layout.

Johnny Morrison-Howe UP926743

47

Risks
As this project did not involve operating with any sensitive data or dangerous equipment
in this project, the risk assessment only contains items risks that would cause project
setbacks.

Evaluating project management
Overall I was able to manage my project relatively effectively – most stages were
completed in their respective timeframes, and each stage was started in the correct
order.

Writing my literature review took longer than expected which had the knock-on effect
of starting development of the application about a month and a half later than planned
(development started in February). This in turn caused the project to be in an almost-
complete state a week later, in mid-April. The report was also started about a month
later than planned, around the start of April. By this point I did have the added advantage
of having most of the deliverables complete, making myself more informed as I came to
write the report.

A potential flaw of Waterfall was that my being late in one aspect affected the project
as a whole. However, I feel it was necessary to have most of the planning complete by
the time I started with implementation.

I wrote a good amount of notes during development documenting classes I’d used and
issues I had – these helped me quickly draft my report structure and recall aspects of
the development experience quicker than I would’ve been able to from memory and Git
commits alone.

Description Impact Mitigation/Avoidance
Last.fm decides to close
or restrict its API

High Although I wouldn’t have much influence to
avoid this issue, I would be able to compile
and display the list of tracks on-device to
take Last.fm out of the equation. This would
defeat much of the point of the application,
however it would still allow me a chance to
build a Material UI 3 podcast playing app.

Parsing a podcast’s
description doesn’t prove
possible with enough
podcasts (it’s too
variable)

Medium Although it may be possible to implement
looser pattern matching, a completely
alternate solution would be using an API like
ShazamKit to recognize the song and get
track data for every song.

My laptop breaks High I plan to store all source code on an SCM like
GitHub, therefore I should be able to still
develop my application using the University
machines (even if less convenient).

Johnny Morrison-Howe UP926743

48

Conclusion
Summary
In this project, I researched different ways tracks from a mix (in the form of a podcast)
could be parsed and tracked using Last.fm. Seeing a lack of available tools for this, I
built an Android application using Kotlin and Jetpack Compose to bridge the gap.

In testing, the application managed to correctly parse tracklists the majority of the time;
Adding track time functionality and consistent tracklist formatting (in the case of Avicii
FM) would bring it up to a 100% success rate. RSS Feed parsing, however, did have a
100% success rate, correctly parsing every podcast I tested it with.

Although I almost managed to close the gap from podcast description to Last.fm page,
I was not able to implement integration with Last.fm in time, due to the user interface
taking longer than expected. If I were to do this again, I would have allocated more time
to that task.

With future work on completing the basic project idea and implementing the features
that would bring it more in line with other podcast players, I think the USP of this
application would make it shine to the potential userbase who both track their music
and listen to podcasts. Alternatively, this project could assist those with pre-existing
applications implement the tracklist parsing features.

On a personal note, since being introduced to Last.fm about 4 years ago I’ve wanted to
solve the problem of tracking music I discover through podcasts, however I was not
close to the level of experience needed to build a project this complex. To finally have
the opportunity to (almost) build it has been a great experience for me, and I look
forward to actually making it complete in the future.

Future work
I did not have enough time to complete all of the requirements – if I were to continue
work on this project, I implement the following:

Last.fm integration
The most obvious first action is to complete the core functionality of the application by
integrating with Last.fm (and similar open-source services like Libre.fm).

It would not be too time-consuming to just make an HTTP POST request using the
Last.fm API with track metadata. Last.fm uses accounts however, and obtaining a user
key to send with the request would likely require a rework of the application for storing
said key(it would be ill-advised to just store it as JSON in plain-text) and two new
screens: one to host an in-app web browser for obtaining the key via signing into
Last.fm, and another to change accounts or revoke access.

Parsing tracklists with times
Although the ratio of tracklists with times to ones without is low, I managed to find at
least one(which was tested on earlier). Adding the ability to parse these times would
require a minor rework of the parser; it currently only has two exit states (failed and
parsed without times) as only the service can currently add times to tracks. However, it

Johnny Morrison-Howe UP926743

49

would result in far more accurate track start times than is currently possible, if podcast
creators put the extra work in of providing these times.

Slightly relatedly, it may also be useful to allow a user to edit track start times and
metadata manually. If a user plays a particular podcast (without times in the description)
a lot, they may find it useful to add their own times, or adjust the metadata in case the
parser was incorrect.

Enhanced playback controls
In its current state, the application only shows the current episode title and track in a
notification, to allow for the service to run in the foreground. It has a greatly reduced
feature set relative to a notification that implements a Media NotificationStyle – an
example from Pocket Casts is shown in Figure 37. Note the album art, progress bar and
play/pause, which could be implemented with no modifications to the Player.

Figure 37

Lower priority requirements
Features like favourites and ordering podcasts are present in almost all standard
podcast clients. Pocket Casts (Pocket Casts, 2023), rated Best Podcast App by Android
Police (Hagop Kavafian, 2023), is praised for organising episodes by season and having
controls for playback speed and a sleep timer.

Features like these would bring PodcastScrobbler in line with other popular podcast
apps. Most would not be difficult to implement, i.e. favourites would only require a new
field and a method of changing said field in the Episode Details screen, and Kotlin has
built-in functionality for sorting items in an array based on their attributes which would
make ordering by i.e. most recent episode, or titles alphabetically, possible.

Google Cast controls would also be a very useful addition as it would make podcasts
playable on Google Cast enabled speakers and displays. This would require a lot more
work however – Google Cast works by instructing smart speakers and displays to
navigate to a webpage for playback (Google, 2022), and so this would necessitate the
creation of an entirely new service on a different platform to facilitate the functionality7.

7 There is an alternate mode which streams audio from the device, but the audio must be on
the device first, not streamed, therefore this would not be applicable to all scenarios.

Johnny Morrison-Howe UP926743

50

References
Adenuga, A. (2022). Spotify ‘Unwrapped’: An Exploration of Data-Based. iSChannel, 3-

11.

Android. (n.d.). Design for Android. Retrieved from Android Developers:
https://developer.android.com/design

Android Developers. (2021, October 27). Introducing Jetpack Media3. Retrieved from
Android Developers Blog: https://android-
developers.googleblog.com/2021/10/jetpack-media3.html

Android Developers. (2022, November 16). Navigation. Retrieved from Android
Developers: https://developer.android.com/guide/navigation

Android Developers. (2022, October 28). Play media in the background. Retrieved
from Android Developers:
https://developer.android.com/guide/topics/media/media3/getting-
started/playing-in-background#using-mediasessionservice

Android Developers. (2023, March 1). Android's Kotlin-first approach. Retrieved from
Android Developers: https://developer.android.com/kotlin/first

Android Developers. (2023, April 5). androidx.compose.runtime. Retrieved from
Android Developers Reference:
https://developer.android.com/reference/kotlin/androidx/compose/runtime/pac
kage-summary#remember(kotlin.Function0)

Android Developers. (2023, March 1). Jetpack Compose Overview. Retrieved from
Android Developers: https://developer.android.com/jetpack/compose/why-
adopt#less-code

Android Developers. (2023, March 23). Media3 is ready to play! Retrieved from
Android Developers Blog: https://android-
developers.googleblog.com/2023/03/media3-is-ready-to-play.html

Antonelli, W. (2023, September 23). Last.fm tracks all your music stats by 'scrobbling'
them. Here's what that means and how it works. Retrieved from Business
Insider: https://www.businessinsider.com/guides/tech/what-is-last-fm-
scrobbling?r=US&IR=T

Audie Sumaray, S. K. (2012). A comparison of data serialization formats for optimal
efficiency on a mobile platform. Proceedings of the 6th International
Conference on Ubiquitous Information Management and Communication (pp. 1-
6). New York, NY, USA: Association for Computing Machinery.

Balsamiq. (2023, March 8). Balsamiq Wireframes. Retrieved from Balsamiq
Wireframes: https://balsamiq.com/wireframes/

Bartlett, S. (2023, May 05). The Diary Of A CEO with Steven Bartlett. Retrieved from
Anchor: https://anchor.fm/s/81678e4c/podcast/rss

BBC News. (2003, March 27). Website offers new view of music. Retrieved from BBC
News: http://news.bbc.co.uk/1/hi/technology/2888431.stm

Johnny Morrison-Howe UP926743

51

Bergling, T. (2018, March 25). Avicii FM. Retrieved from Podtree:
https://officialaviciipodcast.podtree.com/feed/podcast/

Bergling, T. (2018). Avicii FM #008.

Berry, R. (2006). Will the iPod Kill the Radio Star? Convergence, 143-162.

Brandwijk, T. (2022). Mind Over Matter Podcast #150. [RSS Feed]. Retrieved from
https://www.emblissmusic.com/2022/12/25/mind-over-matter-podcast-150-
year-mix-2022/

Brown, S. (2011). The C4 model for visualising software architecture. Retrieved from
The C4 Model: https://c4model.com/

c210344. (2016, May 18). Looking for a podcast app that scrobbles. Retrieved January
29, 2023, from Reddit:
https://www.reddit.com/r/lastfm/comments/4jhl45/comment/d3a2lxr/?utm_sou
rce=share&utm_medium=web2x&context=3

Chartable. (2023, May 5). Podcast Charts - Apple Podcasts - Great Britain - All
Podcasts. Retrieved from Chartable: https://chartable.com/charts/itunes/gb-all-
podcasts-podcasts

Chartable. (2023, May 6). Podcast Charts - Apple Podcasts - Great Britain - Music.
Retrieved from Chartable: https://chartable.com/charts/itunes/gb-music-
podcasts

Claptone. (2023, May 1). Clapcast by Claptone. Retrieved from This Is Distorted:
https://portal-api.thisisdistorted.com/xml/clapcast

Crooked Media. (2023, May 4). Pod Save the UK. Retrieved from Simplecast:
https://feeds.simplecast.com/snMMEVFU

Defected. (2023, May 5). Defected Radio. Retrieved from This Is Distorted:
https://portal-api.thisisdistorted.com/xml/defected-in-the-house

ExoPlayer. (2023, April 19). ExoPlayer. Retrieved from ExoPlayer:
https://exoplayer.dev/

Flutter. (2023, April 26). Writing custom platform-specific code. Retrieved from Flutter
Docs: https://docs.flutter.dev/platform-integration/platform-channels

Goalhanger Podcasts. (2023, May 1). Leading. Retrieved from Acast:
https://feeds.acast.com/public/shows/leading

Goalhanger Podcasts. (2023, May 5). The Rest Is Politics. Retrieved from Acast:
https://feeds.acast.com/public/shows/620cc95e2641e200137b94d8

Google. (2021, May 18). Cards. Retrieved from Material 3:
https://m3.material.io/components/cards/overview

Google. (2021, May 18). Floating Action Button. Retrieved from Material Design 3:
https://m3.material.io/components/floating-action-button/overview

Google. (2021, October 27). Introducing Material Theme Builder. Retrieved from
Material Design Blog: https://material.io/blog/material-theme-builder

Johnny Morrison-Howe UP926743

52

Google. (2021, May 18). Unveiling Material You. Retrieved from Material Design Blog:
https://material.io/blog/announcing-material-you

Google. (2022, August 17). Google Cast Overview. Retrieved from Google Cast Docs:
https://developers.google.com/cast/docs/overview

Google. (2022, February 18). Volley overview. Retrieved from Volley Documentation:
https://google.github.io/volley/

Götting, M. C. (2022, February 8). Most commonly used apps for listening to podcasts
among podcast listeners in the United States in 2019 and 2020. Retrieved from
Statista: https://www.statista.com/statistics/943537/podcast-listening-apps-
us/#statisticContainer

Hagop Kavafian, J. B. (2023, February 15). 8 best podcast apps on Android in 2023.
Retrieved from Android Police: https://www.androidpolice.com/best-podcast-
apps

Hammersley, B. (2004, February 12). Audible revolution. Retrieved from The Guardian:
https://www.theguardian.com/media/2004/feb/12/broadcasting.digitalmedia

J W Rainsbury, S. M. (2006). Podcasts: an educational revolution in the making?
Journal of the Royal Society of Medicine, 99, 481-482.

Kostek, B. (2018). Listening to Live Music: Life Beyond Music Recommendation
Systems. Joint Conference - Acoustics, 1-5.

Kotlin. (2023, April 28). Coroutines. Retrieved from Kotlin Docs:
https://kotlinlang.org/docs/coroutines-overview.html

Kotlin. (2023, April 28). Serialization. Retrieved from Kotlin Docs:
https://kotlinlang.org/docs/serialization.html

Krastrenakes, J. (2022, November 22). Last.fm turns 20 and now has a following on
Discord. Retrieved from The Verge:
https://www.theverge.com/2022/11/22/23473358/lastfm-discord-bot-neil-
young-spotify

Laoyan, S. (2022, October 15). What is Agile methodology? (A beginner’s guide).
Retrieved from asana: https://asana.com/resources/agile-methodology

Last.fm. (2023). When is a Scrobble a Scrobble? Retrieved from Last.fm:
https://www.last.fm/api/scrobbling#when-is-a-scrobble-a-scrobble

Last.fm. (n.d.). Scrobbling 2.0 Documentation. Retrieved 01 29, 2023, from Last.fm:
https://www.last.fm/api/scrobbling#when-is-a-scrobble-a-scrobble

Leeron Hoory, C. B. (2022, March 25). What Is Waterfall Methodology? Here’s How It
Can Help Your Project Management Strategy. Retrieved from Forbes Advisor:
https://www.forbes.com/advisor/business/what-is-waterfall-methodology/

Lewis, D. (2023, January 29). Apple Podcasts Statistics. Retrieved from Podcast
Industry Insights: https://podcastindustryinsights.com/apple-podcasts-
statistics/

Johnny Morrison-Howe UP926743

53

Louis, T. (2000, October 13). Discussion of XML news / announcement / syndication /
resource discovery formats. Retrieved from Yahoo! Groups:
https://web.archive.org/web/20131031070818/http://groups.yahoo.com/neo/gr
oups/syndication/conversations/topics/698

Madaan, R. (2023, April 18). New Spotify Home page UI on Android & iOS faces
backlash from users. Retrieved from PiunikaWeb:
https://piunikaweb.com/2023/04/18/new-spotify-home-page-ui-on-android-
and-ios-faces-backlash/

Microsoft. (2023, May 3). Visual Studio Code Frequently Asked Questions. Retrieved
from Visual Studio Code: https://code.visualstudio.com/docs/supporting/FAQ

Perry, A. (2023, March 16). Spotify's big update isn't just annoying, it misses the point.
Retrieved from Mashable: https://mashable.com/article/spotify-tiktok-fyp-
missing-the-point

Peter Josling, C. L. (2020, August 25). Scroball. Retrieved from GitHub:
https://github.com/peterjosling/scroball

PlantUML. (2023, April 18). PlantUML. Retrieved from PlantUML: https://plantuml.com/

Pocket Casts. (2023). Pocket Casts. Retrieved from Pocket Casts:
https://pocketcasts.com/

Prototype202. (2023, April 19). The Melodic Sessions. Retrieved from Prototype202:
https://www.prototype202.com/rss/prototype202.xml

React. (2023). Managing State. Retrieved from React:
https://react.dev/learn/managing-state

RSS Advisory Board. (2009, March 30). RSS 2.0 Specification. Retrieved from RSS
Advisory Board: https://www.rssboard.org/rss-specification

Sonar, A. (2023, May 6). Alexey Sonar. Retrieved from PromoDJ:
https://promodj.com/alexeysonar/rss.xml

Taylor-Watt, D. (2018, June 26). Introducting the first version of BBC Sounds.
Retrieved from BBC:
https://www.bbc.co.uk/blogs/aboutthebbc/entries/bde59828-90ea-46ac-
be5b-6926a07d93fb

TechRadar. (2006, October 3). Digital Music Award winners announced. Retrieved
from TechRadar:
https://web.archive.org/web/20120229171651/http://www.techradar.com/news
/audio/portable-audio/digital-music-award-winners-announced-159274

Toombs, C. (2022, February 12). Android 13 DP1 opens up dynamic icon theming to
third-party apps. Retrieved from Android Police:
https://www.androidpolice.com/android-13-dp1-gives-your-home-screen-
icons-a-touch-of-material-you-theming/

William Hill. (2023, May 4). Up Front with Simon Jordan. Retrieved from Transistor:
https://feeds.transistor.fm/up-front

Johnny Morrison-Howe UP926743

54

Wohlstadter, J. (2023, January). Introducing DJ Mixes on Spotify & Apple Music,
powered by Proton. Retrieved from Proton Radio: https://intercom.help/proton-
radio/en/articles/2360688-introducing-dj-mixes-on-spotify-apple-music-
powered-by-proton

World Wide Web Consortium. (2004). HTML Compatibility Guidelines. Retrieved April
30, 2023, from XHTML: https://www.w3.org/TR/xhtml1/guidelines.html

